Complex Ops
Reduce¤
sum
¤
sum(
axis: int | Sequence[int] | None = None,
keepdim=False,
dtype: DTypeLike | None = None,
) -> Tensor
Returns the sum of the elements of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in dtype keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.sum().numpy())
15
print(t.sum(axis=0).numpy())
[3 5 7]
print(t.sum(axis=1).numpy())
[ 3 12]
Source code in tinygrad/tensor.py
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 | |
prod
¤
prod(
axis: int | Sequence[int] | None = None,
keepdim=False,
dtype: DTypeLike | None = None,
) -> Tensor
Returns the product of the elements of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in dtype keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
print(t.numpy())
[[-1 -2 -3]
[ 1 2 3]]
print(t.prod().numpy())
-36
print(t.prod(axis=0).numpy())
[-1 -4 -9]
print(t.prod(axis=1).numpy())
[-6 6]
Source code in tinygrad/tensor.py
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 | |
max
¤
Returns the maximum value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.max().numpy())
5
print(t.max(axis=0).numpy())
[5 4 3]
print(t.max(axis=1, keepdim=True).numpy())
[[2]
[5]]
Source code in tinygrad/tensor.py
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 | |
min
¤
Returns the minimum value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.min().numpy())
0
print(t.min(axis=0).numpy())
[1 0 2]
print(t.min(axis=1, keepdim=True).numpy())
[[0]
[3]]
Source code in tinygrad/tensor.py
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 | |
any
¤
Tests if any element evaluates to True along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.any().numpy())
True
print(t.any(axis=0).numpy())
[ True True]
print(t.any(axis=1, keepdim=True).numpy())
[[ True]
[ True]
[False]]
Source code in tinygrad/tensor.py
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 | |
all
¤
Tests if all element evaluates to True along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.all().numpy())
False
print(t.all(axis=0).numpy())
[False False]
print(t.all(axis=1, keepdim=True).numpy())
[[ True]
[False]
[False]]
Source code in tinygrad/tensor.py
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 | |
isclose
¤
Returns a new tensor with element-wise comparison of closeness to other within a tolerance.
The rtol and atol keyword arguments control the relative and absolute tolerance of the comparison.
By default, two NaN values are not close to each other. If equal_nan is True, two NaN values are considered close.
print(Tensor([1e-7, 1e-8, 1e-9, float('nan')]).isclose(Tensor([0.0, 0.0, 0.0, float('nan')])).numpy())
[False True True False]
print(Tensor([float('nan')]).isclose(Tensor([float('nan')]), equal_nan=True).numpy())
[ True]
Source code in tinygrad/tensor.py
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 | |
mean
¤
Returns the mean value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the mean is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.mean().numpy())
2.5907671
print(t.mean(axis=0).numpy())
[2.6623 2.4031 2.707 ]
print(t.mean(axis=1).numpy())
[2.833 2.3485]
Source code in tinygrad/tensor.py
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 | |
var
¤
Returns the variance of the tensor along the specified axis or axes.
You can pass in axis, keepdim, and correction keyword arguments to control the axis along
which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.var().numpy())
0.10992539
print(t.var(axis=0).numpy())
[0.2134 0.2189 0.0096]
print(t.var(axis=1).numpy())
[0.0187 0.08 ]
Source code in tinygrad/tensor.py
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 | |
var_mean
¤
var_mean(
axis: int | Sequence[int] | None = None,
keepdim=False,
correction=1,
) -> tuple[Tensor, Tensor]
Calculates the variance and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.var and Tensor.mean to match torch.var_mean.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
var, mean = t.var_mean()
print(var.numpy(), mean.numpy())
0.10992539 2.5907671
Source code in tinygrad/tensor.py
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 | |
std
¤
Returns the standard deviation of the tensor along the specified axis or axes.
You can pass in axis, keepdim, and correction keyword arguments to control the axis along
which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.std().numpy())
0.33154997
print(t.std(axis=0).numpy())
[0.462 0.4679 0.0981]
print(t.std(axis=1).numpy())
[0.1367 0.2829]
Source code in tinygrad/tensor.py
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 | |
std_mean
¤
std_mean(
axis: int | Sequence[int] | None = None,
keepdim=False,
correction=1,
) -> tuple[Tensor, Tensor]
Calculates the standard deviation and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.std and Tensor.mean to match torch.std_mean.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
std, mean = t.std_mean()
print(std.numpy(), mean.numpy())
0.33154997 2.5907671
Source code in tinygrad/tensor.py
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 | |
softmax
¤
softmax(axis=-1, dtype: DTypeLike | None = None) -> Tensor
Applies the softmax function to the tensor along the specified axis.
Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.
You can pass in the axis keyword argument to control the axis along which the softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.softmax().numpy())
[[0.4436 0.2664 0.29 ]
[0.2924 0.1727 0.5349]]
print(t.softmax(axis=0).numpy())
[[0.787 0.7897 0.5689]
[0.213 0.2103 0.4311]]
Source code in tinygrad/tensor.py
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 | |
log_softmax
¤
log_softmax(
axis=-1, dtype: DTypeLike | None = None
) -> Tensor
Applies the log-softmax function to the tensor along the specified axis.
The log-softmax function is a numerically stable alternative to the softmax function in log space.
You can pass in the axis keyword argument to control the axis along which the log-softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.log_softmax().numpy())
[[-0.8127 -1.3228 -1.238 ]
[-1.2297 -1.7564 -0.6256]]
print(t.log_softmax(axis=0).numpy())
[[-0.2396 -0.2361 -0.564 ]
[-1.5463 -1.5594 -0.8414]]
Source code in tinygrad/tensor.py
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 | |
logsumexp
¤
logsumexp(axis=None, keepdim=False) -> Tensor
Computes the log-sum-exp of the tensor along the specified axis or axes.
The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.
You can pass in axis and keepdim keyword arguments to control the axis along
which the log-sum-exp is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logsumexp().numpy())
2.1347282
print(t.logsumexp(axis=0).numpy())
[1.2174 0.7039 1.1167]
print(t.logsumexp(axis=1).numpy())
[1.7906 0.9009]
Source code in tinygrad/tensor.py
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 | |
logcumsumexp
¤
logcumsumexp(axis=0) -> Tensor
Computes the log-cumsum-exp of the tensor along the specified axis or axes.
The log-cumsum-exp function is a numerically stable way to compute the logarithm of the cumulative sum of exponentials.
You can pass in the axis keyword argument to control the axis along which
the log-cumsum-exp is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logcumsumexp().numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=0).numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=1).numpy())
[[ 0.9779 1.4481 1.7906]
[-0.3288 0.1353 0.9009]]
Source code in tinygrad/tensor.py
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 | |
argmax
¤
argmax(axis=None, keepdim=False) -> Tensor
Returns the indices of the maximum value of the tensor along the specified axis.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
3
print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
[1 1 1]
print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
[2 0]
Source code in tinygrad/tensor.py
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 | |
argmin
¤
argmin(axis=None, keepdim=False) -> Tensor
Returns the indices of the minimum value of the tensor along the specified axis.
You can pass in axis and keepdim keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
1
print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
[0 0 0]
print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
[1 2]
Source code in tinygrad/tensor.py
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 | |
Processing¤
avg_pool2d
¤
avg_pool2d(
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
ceil_mode=False,
count_include_pad=True,
) -> Tensor
Applies average pooling over a tensor.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
When ceil_mode is set to True, output shape will be determined using ceil division.
When count_include_pad is set to False, zero padding will not be included in the averaging calculation.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.avg_pool2d().numpy())
[[[[ 3. 5.]
[13. 15.]]]]
print(t.avg_pool2d(ceil_mode=True).numpy())
[[[[ 3. 5. 6.5]
[13. 15. 16.5]
[20.5 22.5 24. ]]]]
print(t.avg_pool2d(padding=1).numpy())
[[[[ 0. 0.75 1.75]
[ 3.75 9. 11. ]
[ 8.75 19. 21. ]]]]
print(t.avg_pool2d(padding=1, count_include_pad=False).numpy())
[[[[ 0. 1.5 3.5]
[ 7.5 9. 11. ]
[17.5 19. 21. ]]]]
Source code in tinygrad/tensor.py
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 | |
max_pool2d
¤
max_pool2d(
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
ceil_mode=False,
return_indices=False,
) -> Tensor | tuple[Tensor, Tensor]
Applies max pooling over a tensor.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
When ceil_mode is set to True, output shape will be determined using ceil division.
When return_indices is set to True, the argmax will be returned along with the max values.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.max_pool2d().numpy())
[[[[ 6 8]
[16 18]]]]
print(t.max_pool2d(ceil_mode=True).numpy())
[[[[ 6 8 9]
[16 18 19]
[21 23 24]]]]
print(t.max_pool2d(padding=1).numpy())
[[[[ 0 2 4]
[10 12 14]
[20 22 24]]]]
Source code in tinygrad/tensor.py
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 | |
max_unpool2d
¤
max_unpool2d(
indices: Tensor,
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
output_size=None,
)
Performs a partial inverse of max_pool2d using the indices from the argmax.
When output_size is provided, the output shape disambiguates to the provided shape.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(1, 17).reshape(1, 1, 4, 4)
print(t.numpy())
[[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[13 14 15 16]]]]
output, indices = Tensor.max_pool2d(t, return_indices=True)
print(output.numpy())
print(indices.numpy())
[[[[ 6 8]
[14 16]]]]
[[[[ 5 7]
[13 15]]]]
print(Tensor.max_unpool2d(output, indices).numpy())
[[[[ 0 0 0 0]
[ 0 6 0 8]
[ 0 0 0 0]
[ 0 14 0 16]]]]
Source code in tinygrad/tensor.py
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 | |
conv2d
¤
conv2d(
weight: Tensor,
bias: Tensor | None = None,
groups=1,
stride=1,
dilation=1,
padding: int | tuple[int, ...] = 0,
dtype: DTypeLike | None = None,
) -> Tensor
Applies a convolution over a tensor with a given weight and optional bias.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
Note
unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv2d(w).numpy())
[[[[ 8. 12.]
[20. 24.]]]]
Source code in tinygrad/tensor.py
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 | |
conv_transpose2d
¤
conv_transpose2d(
weight: Tensor,
bias: Tensor | None = None,
groups=1,
stride=1,
dilation=1,
padding=0,
output_padding=0,
) -> Tensor
Applies a transposed convolution over a tensor with a given weight and optional bias.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
Note
unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv_transpose2d(w).numpy())
[[[[ 0. 1. 3. 2.]
[ 3. 8. 12. 7.]
[ 9. 20. 24. 13.]
[ 6. 13. 15. 8.]]]]
Source code in tinygrad/tensor.py
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 | |
dot
¤
Performs dot product between two tensors.
If w is 1-D, it's a sum product over the last axis of self and w.
If w is N-D with N>=2, it's a sum product over the last axis of self and the second-to-last axis of w.
You can pass in the optional dtype keyword argument to control the data type of the accumulation.
a = Tensor([1, 2, 3])
b = Tensor([1, 1, 0])
print(a.dot(b).numpy())
3
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.dot(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 | |
matmul
¤
Performs matrix multiplication between two tensors.
You can pass in the reverse keyword argument to control the order of the matrix multiplication.
You can pass in the optional dtype keyword argument to control the data type of the accumulation.
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.matmul(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 | |
einsum
staticmethod
¤
einsum(
formula: str,
*operands: Tensor | Sequence[Tensor],
dtype: DTypeLike | None = None
) -> Tensor
Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.
See: https://pytorch.org/docs/stable/generated/torch.einsum.html
x = Tensor([[1, 2], [3, 4]])
y = Tensor([[5, 6], [7, 8]])
print(Tensor.einsum("ij,ij->", x, y).numpy())
70
Source code in tinygrad/tensor.py
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 | |
cumsum
¤
Computes the cumulative sum of the tensor along the specified axis.
t = Tensor.ones(2, 3)
print(t.numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(t.cumsum(1).numpy())
[[1. 2. 3.]
[1. 2. 3.]]
Source code in tinygrad/tensor.py
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 | |
cummax
¤
Computes the cumulative max of the tensor along the specified axis.
t = Tensor([0, 1, -1, 2, -2, 3, -3])
print(t.numpy())
[ 0 1 -1 2 -2 3 -3]
print(t.cummax(0).numpy())
[0 1 1 2 2 3 3]
Source code in tinygrad/tensor.py
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 | |
triu
¤
Returns the upper triangular part of the tensor, the other elements are set to 0.
The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal.
Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.triu(diagonal=0).numpy())
[[ 1 2 3 4]
[ 0 6 7 8]
[ 0 0 11 12]]
print(t.triu(diagonal=1).numpy())
[[ 0 2 3 4]
[ 0 0 7 8]
[ 0 0 0 12]]
print(t.triu(diagonal=-1).numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 0 10 11 12]]
Source code in tinygrad/tensor.py
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 | |
tril
¤
Returns the lower triangular part of the tensor, the other elements are set to 0.
The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal.
Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.tril(diagonal=0).numpy())
[[ 1 0 0 0]
[ 5 6 0 0]
[ 9 10 11 0]]
print(t.tril(diagonal=1).numpy())
[[ 1 2 0 0]
[ 5 6 7 0]
[ 9 10 11 12]]
print(t.tril(diagonal=-1).numpy())
[[ 0 0 0 0]
[ 5 0 0 0]
[ 9 10 0 0]]
Source code in tinygrad/tensor.py
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 | |
interpolate
¤
Downsamples or Upsamples to the input size, accepts 0 to N batch dimensions.
The interpolation algorithm is selected with mode which currently only supports linear, nearest and nearest-exact.
To run bilinear or trilinear, pass in a 2D or 3D size.
t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
print(t.numpy())
[[ 1 2 3 4]
[21 22 23 24]
[41 42 43 44]]
print(t.interpolate(size=(2,3), mode="linear").numpy())
[[ 6 7 8]
[36 37 38]]
Source code in tinygrad/tensor.py
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 | |
scatter
¤
scatter(
dim: int,
index: Tensor,
src: Tensor | ConstType,
reduce: Literal["multiply", "add"] | None = None,
) -> Tensor
Scatters src values along an axis specified by dim.
Apply add or multiply reduction operation with reduce.
Note
To use the reduce argument with a Tensor src, see Tensor.scatter_reduce.
src = Tensor.arange(1, 11).reshape(2, 5)
print(src.numpy())
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
index = Tensor([[0, 1, 2, 0]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(0, index, src).numpy())
[[1 0 0 4 0]
[0 2 0 0 0]
[0 0 3 0 0]]
index = Tensor([[0, 1, 2], [0, 1, 4]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(1, index, src).numpy())
[[1 2 3 0 0]
[6 7 0 0 8]
[0 0 0 0 0]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='multiply').numpy())
[[2. 2. 2.46 2. ]
[2. 2. 2. 2.46]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='add').numpy())
[[2. 2. 3.23 2. ]
[2. 2. 2. 3.23]]
Source code in tinygrad/tensor.py
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 | |
scatter_reduce
¤
scatter_reduce(
dim: int,
index: Tensor,
src: Tensor,
reduce: Literal["sum", "prod", "mean", "amax", "amin"],
include_self: bool = True,
) -> Tensor
Scatters src values along an axis specified by dim.
Apply "sum", "prod", "mean", "amax", or "amin" reduction operations with reduce.
Set include_self=False to exclude values in the self Tensor from the reduction.
src = Tensor.arange(1, 11).cast(dtypes.float).reshape(2, 5)
print(src.numpy())
index = Tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
print(index.numpy())
[[ 1. 2. 3. 4. 5.]
[ 6. 7. 8. 9. 10.]]
[[0 0 0 0 0]
[0 0 0 0 0]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='sum').numpy())
[[ 8. 10. 12. 14. 16.]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='prod').numpy())
[[ 6. 14. 24. 36. 50.]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='mean', include_self=False).numpy())
[[3.5 4.5 5.5 6.5 7.5]]
print(Tensor([[-10, 20, 0, 5, 10]], dtype=src.dtype).scatter_reduce(0, index, src, reduce='amax').numpy())
[[ 6. 20. 8. 9. 10.]]
print(Tensor([[-10, 20, 0, 5, 10]], dtype=src.dtype).scatter_reduce(0, index, src, reduce='amin').numpy())
[[-10. 2. 0. 4. 5.]]
Source code in tinygrad/tensor.py
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 | |
masked_select
¤
masked_select(mask)
Selects elements from self based on the boolean mask.
t = Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
mask = Tensor([[True, False, True], [False, True, False], [False, False, True]])
print(t.numpy())
print(mask.numpy())
[[0 1 2]
[3 4 5]
[6 7 8]]
[[ True False True]
[False True False]
[False False True]]
print(t.masked_select(mask).numpy())
[0 2 4 8]
Source code in tinygrad/tensor.py
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 | |
masked_fill
¤
Replaces self with value wherever the elements of mask are True.
t = Tensor([1, 2, 3, 4, 5])
mask = Tensor([True, False, True, False, False])
print(t.masked_fill(mask, -12).numpy())
[-12 2 -12 4 5]
t = Tensor([1, 2, 3, 4, 5])
mask = Tensor([True, False, True, False, False])
value = Tensor([-1, -2, -3, -4, -5])
print(t.masked_fill(mask, value).numpy())
[-1 2 -3 4 5]
Source code in tinygrad/tensor.py
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 | |
sort
¤
Performs a bitonic sort on the tensor along the specified dimension.
Order of indices for equivalent elements is always preserved.
See: https://en.wikipedia.org/wiki/Bitonic_sorter
t = Tensor([[0.1, 0.5, 1.2, 3.4, 2.1], [2.2, 1.9, 0.3, 4.5, 0.8]])
print(t.numpy())
[[0.1 0.5 1.2 3.4 2.1]
[2.2 1.9 0.3 4.5 0.8]]
sorted_values, indices = t.sort(dim=1, descending=True)
print(sorted_values.numpy())
print(indices.numpy())
[[3.4 2.1 1.2 0.5 0.1]
[4.5 2.2 1.9 0.8 0.3]]
[[3 4 2 1 0]
[3 0 1 4 2]]
Source code in tinygrad/tensor.py
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 | |
topk
¤
Computes the top-k elements of the tensor along the specified dim.
Order of indices for equivalent elements is always preserved.
t = Tensor([[0.1, 0.5, 1.2, 3.4, 2.1], [2.2, 1.9, 0.3, 4.5, 0.8]])
print(t.numpy())
[[0.1 0.5 1.2 3.4 2.1]
[2.2 1.9 0.3 4.5 0.8]]
topk_values, topk_indices = t.topk(2, dim=1)
print(topk_values.numpy())
print(topk_indices.numpy())
[[3.4 2.1]
[4.5 2.2]]
[[3 4]
[3 0]]
Source code in tinygrad/tensor.py
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 | |
multinomial
¤
Returns a tensor with num_samples indices sampled from a multinomial distribution weighted by self.
Note
replacement=False for num_samples > 1 is not supported yet.
Tensor.manual_seed(42)
t = Tensor([1, 2, 3, 4])
print(t.multinomial(20, replacement=True).numpy())
[2 1 3 2 3 1 2 2 3 3 3 3 3 3 2 3 2 3 3 3]
Source code in tinygrad/tensor.py
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 | |
Neural Network (functional)¤
linear
¤
Applies a linear transformation to self using weight and bias.
See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
t = Tensor([[1, 2], [3, 4]])
weight = Tensor([[1, 2], [3, 4]])
bias = Tensor([1, 2])
print(t.linear(weight, bias).numpy())
[[ 8 12]
[16 24]]
Source code in tinygrad/tensor.py
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 | |
sequential
¤
Applies a sequence of functions to self chaining the output of each function to the input of the next.
t = Tensor([1, 2, 3])
print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
[3 5 7]
Source code in tinygrad/tensor.py
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 | |
layernorm
¤
Applies Layer Normalization over a mini-batch of inputs.
t = Tensor.randn(8, 10, 16) * 2 + 8
print(t.mean().item(), t.std().item())
7.9793524742126465 2.074720621109009
t = t.layernorm()
print(t.mean().item(), t.std().item())
7.269673196752535e-10 1.0003894567489624
Source code in tinygrad/tensor.py
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 | |
batchnorm
¤
batchnorm(
weight: Tensor | None,
bias: Tensor | None,
mean: Tensor,
invstd: Tensor,
axis: int | tuple[int, ...] = 1,
) -> Tensor
Applies Batch Normalization over a mini-batch of inputs.
t = Tensor.randn(8, 4, 16, 16) * 2 + 8
print(t.mean().item(), t.std().item())
8.019729614257812 1.9927232265472412
t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
print(t.mean().item(), t.std().item())
6.119149134065083e-07 0.9998146891593933
Source code in tinygrad/tensor.py
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 | |
dropout
¤
dropout(p=0.5) -> Tensor
Applies dropout to self.
Note
dropout is only applied when Tensor.training is True.
Tensor.manual_seed(42)
t = Tensor.randn(2, 2)
with Tensor.train():
print(t.dropout().numpy())
[[-1.0287 2.17 ]
[ 1.8178 0. ]]
Source code in tinygrad/tensor.py
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 | |
one_hot
¤
Converts self to a one-hot tensor.
num_classes defaults to -1, which means num_classes will be inferred as max(self) + 1.
t = Tensor([0, 1, 3, 3, 4])
print(t.one_hot(5).numpy())
[[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 0 1 0]
[0 0 0 0 1]]
Source code in tinygrad/tensor.py
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 | |
scaled_dot_product_attention
¤
scaled_dot_product_attention(
key: Tensor,
value: Tensor,
attn_mask: Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
enable_gqa: bool = False,
) -> Tensor
Computes scaled dot-product attention.
self is the query tensor, key is the key tensor, and value is the value tensor.
q = Tensor.randn(2, 4, 8)
k = Tensor.randn(2, 4, 8)
v = Tensor.randn(2, 4, 8)
print(q.scaled_dot_product_attention(k, v).numpy())
[[[ 0.6408 0.3264 0.7317 -1.0943 0.5778 -0.0534 -0.0104 -0.0488]
[ 0.1243 -0.8259 1.6481 -0.8035 -0.3961 0.4269 0.1232 1.6462]
[ 0.9535 0.1068 0.8545 -0.5395 0.4692 -0.0548 -0.2274 0.6152]
[ 0.8891 -0.0411 0.7818 -0.3322 0.3931 -0.0202 -0.1101 0.8129]]
[[-0.4273 -0.6085 -0.0465 0.5246 0.3641 -0.0381 -0.0106 0.8349]
[ 0.6321 0.3654 0.4137 -0.2327 0.2558 0.1418 -1.27 -0.802 ]
[ 0.1794 0.4616 0.1847 -0.1988 0.2123 0.1837 -0.9583 -0.5364]
[ 0.4408 0.6125 0.0811 -0.3886 0.3602 0.4987 -1.4414 -0.9565]]]
Source code in tinygrad/tensor.py
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 | |
binary_crossentropy
¤
Computes the binary cross-entropy loss between self and Y.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
t = Tensor([0.1, 0.9, 0.2])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy(Y).item())
0.14462155103683472
Source code in tinygrad/tensor.py
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 | |
binary_crossentropy_logits
¤
binary_crossentropy_logits(
Y: Tensor,
reduction: ReductionStr = "mean",
pos_weight: Tensor | None = None,
) -> Tensor
Computes the binary cross-entropy loss between self and Y where self is logits.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
t = Tensor([-1, 2, -3])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy_logits(Y).item())
0.16292566061019897
Source code in tinygrad/tensor.py
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 | |
sparse_categorical_crossentropy
¤
sparse_categorical_crossentropy(
Y: Tensor,
ignore_index: int = -1,
label_smoothing=0.0,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the sparse categorical cross-entropy loss between self and Y.
Note
self is logits and Y is the target labels.
NOTE: unlike PyTorch, this function expects the class axis to be -1
See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.sparse_categorical_crossentropy(Y).item())
0.09391524642705917
Source code in tinygrad/tensor.py
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 | |
cross_entropy
¤
cross_entropy(
Y: Tensor,
reduction: ReductionStr = "mean",
label_smoothing: float = 0.0,
) -> Tensor
Computes the cross entropy loss between input logits and target.
Note
self are logits and Y are the target labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 | |
nll_loss
¤
nll_loss(
Y: Tensor,
weight: Tensor | None = None,
ignore_index: int | None = None,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the negative log likelihood loss between log-probabilities and target labels.
Note
self is log-probabilities and Y is the Y labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 | |